[[1 1 1] [1 1 1] [1 2 3]]The first thing we notice is that this semigroup is actually totally ordered [3,2,1]. The second thing that we notice about this semigroup is that the middle element is index two. Therefore, the corresponding monotonic semigroup is M2,1 + identity or the index two aperiodic monogenic semigroup with an identity element adjoined to it.
We can learn about this semigroup by comparing it to its monotonic commutative aperiodic counterpart. The only difference is that 2*3=1 rather then 2 this means that the middle and minimal elements can either produce their least upper bound which is the middle element or the maximal element. Since this produces a greater upper bound then it would otherwise would among comparable elements I call this chain non-monotonic. This special T3 semigroup often appears in larger partially ordered semigroups as a subsemigroup.
No comments:
Post a Comment