Processing math: 100%

Thursday, December 26, 2013

Asymptotic analysis of combinatorial species

Given a collection of classes of entities we can arrange those entities in terms of generality in order to get an ontology. In particular this can be applied to mathematical structures over a set:

Well it is certainly the case that there is no set number of structures we can apply to a set there is a set number of structures in all the other classes described in the above ontology. The number of families of sets over a set is 2^{2^n}. The number of N-ary relations over a set is 2^{n^k} which in the case of unary relations is 2^n, in the case of binary relations is 2^{n^2}, and in the case of ternary relations is 2^{n^3}.

Some species although different from other species have the same growth rates as them. Coreflexive relations have a growth rate of 2^n like unary relations because both of them involve picking out subsets of a set. This leads to a natural bijection between unary relations and coreflexive binary relations based upon membership so for example the unary relation \{(1), (2), (3)\} might go to the binary relation \{(1, \; 1), (2, \; 2), (3, \; 3)\}.

We can get the growth rates for a variety of other classes of structures. For reflexive relations we get 2^{n^2 -n}, for symmetric relations we get 2^{\frac{n^2}{2}+\frac{n}{2}}, for independency relations we get 2^{\frac{n^2}{2} - \frac{n}{2}}, for antisymmetric relations we get 2^n 3^{\frac{n^2}{2}+\frac{n}{2}}, for asymmetric relations we get just 3^{\frac{n^2}{2}+\frac{n}{2}}, for functions we get (n+1)^n, and for binary operations we get (n+1)^{2^{n}}.

Each of these growth rates can be expressed as transseries, for example, (n+1)^{2^{n}} can be expressed as e^{\log(x+1)e^{\log(2)x}}. The ontological order is a suborder of the asymptotic order on the collection of species as every subspecies of some other species has a smaller growth rate then its parent species.

No comments:

Post a Comment