Processing math: 100%

Friday, June 29, 2012

Linear ordinary differential operators

Linear ordinary differential operators are endomorphisms of differentiable vector spaces, and they can be decomposed into separate functions that handle the complementary solution y_c and the particular solution y_p of a differential vector space.

Linear differential operators are inverted by linear integral operators, for example, the diff operator is inverted by antidiff. A variety of methods can be used to make linear differential operators invertible including laplace transforms and series methods.

No comments:

Post a Comment